
ViewIt Demo Source Code Notes
1. Minimum Code
2. "About Program" Item
3. Modeless Window
4. Modal Window
5. Nested Modal Window
6. Window Structure
7. Window Data Links
8. Control Overrides
    One of the best features of FaceWare programming is the small amount of code required to
do even complex operations.    Only two pages of code were needed to create this 
"vDemoXY" program!
    The following notes describe the steps taken to build vDemoXY from the "MinimumXY" 
program, and assume that you have at least read the "Startup" topics in the main ViewIt 
Help window.    These notes provide a detailed description of why each line of code appears 
in vDemoXY, and will help you understand how to add ViewIt windows to your programs.    
Print the source from one of the vDemoXY programs and examine it while reading the notes.
    Although the source appears here in Pascal, source in other languages is included with 
ViewIt, and has a line-by-line correspondence to the Pascal.    If using the HyperFace interface
to HyperCard®, the "vDemoHF" stack contains HyperTalk® scripts that also have a line-by-
line correspondence to the Pascal.

1. Minimum Code
    The lines from vDemoXY corresponding to the MinimumXY program (described in 
"Minimum Code" in "Startup" topics) are
 fRec.uName := 'vDemo.Rsrc';
 FaceIt(nil,DoInit,0,0,0,0);
 ...
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);
    ...
 until false;
which, when executed, open the supplemental resource file named "vDemo.Rsrc", initialize 
FaceWare (DoInit), and handle events (DoLoop).    (If using HyperFace, the stack file contains 
all program resources, and uName is not used to pass file name - see HyperFace guide.)
    DoInit is responsible for loading the main menus (Apple, File, Edit, Window) and opening 
the "ViewIt On-Line Help" window, so no code is needed to accomplish these tasks.    DoLoop 
handles all events from standard menu items and the help window, so, again, almost no 
code is needed to support these since nearly all of the menu items in the main menus are 
standard items.    (If using HyperFace, then DoLoop is replaced by HyperCard's own event 
loop, and events needing handling are returned to a stack via the "MainProc" message.)

2. "About Program" Item    (not applicable to HyperFace)
    The first menu item in the Apple menu is the "About Program" item.    Unlike the "Open", 
"Save", "Cut" and other standard items in the main menus, the "About" item must be 
handled by the program (since there is no obvious default behavior that FaceIt could 
execute).    When chosen, this item produces an event that is returned from DoLoop:    
uMenuID = 101 = menu ID of Apple menu, and uMenuItem = 1 = menu item number.    To 
handle this event, we added a little code after DoLoop:
 ...
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);
    if (uMenuID = 101) and (uMenuItem = 1) then
      begin
        uString := concat('Demonstration of...
        FaceIt(nil,ShoStr,3,12,...



      end
    ...
 until false;
which uses the ViewIt ShoStr command to open a simple alert that describes the program.    
After responding to the user event, the code loops back to DoLoop again to handle the next 
event.

3. Modeless Window
    We wanted to illustrate several different window types, the first of which was a modeless 
window (described in "Windows" section of ViewIt guide).    Modeless windows can be opened
and closed at any point within a program, and events from such windows are returned from 
DoLoop.    In this case, we wanted the modeless window to be opened once at launch time 
and remain open while the program was running.    To accomplish this we added a call to 
NewWnd after DoInit but before DoLoop:
 ...
 FaceIt(nil,DoInit,0,0,0,0);
 FaceIt(nil,NewWnd,1000,1,0,0);
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);
    ...
where a = 1000 indicates that resource FWND 1000 should be used to open the window, and
b = 1 indicates that the window is a modeless window.    As described in the "Windows" topic
of the ViewIt guide, the call to NewWnd can be made even if the FWND resource does not 
exist since ViewIt can add a new FWND to the program's resource file when the code is first 
executed.
    The modeless window opened is the "Modeless ViewIt Window".    Events from this window 
that need to be handled by the program are returned from DoLoop with uMenuID = FWND ID
= 1000.    Two of the controls in the window generate such events when hit:    the "?" button 
and the "Open Modal ViewIt Window" button.    Both of these controls have the "Return On 
Hit" option checked in the Control dialog which is why they generate events when hit.    To 
handle these events, the following code was added after DoLoop:
    FaceIt(nil,DoLoop,0,0,0,0);
    ...
    else if (uMenuID = 1000) and (wcHit = 2) then
      ...
    else if (uMenuID = 1000) and (wcHit = 3) then
      ...
where wcHit is being used to distiguish which button was hit.

4. Modal Window
    The "?" and "Open Modal ViewIt Window" buttons are used to illustrate the opening and 
management of modal ViewIt windows (described in "Windows" section of ViewIt guide). 
Modal windows are always opened and closed within isolated sections of program code, and 
the user is forced to deal with the options presented in such windows before continuing.
    As described above, the "Open Modal ViewIt Window" button generates an event returned 
from DoLoop with uMenuID = 1000 and wcHit = 2.    In response to this event, we open a 
new modal window (this window) based on FWND 1001:
    FaceIt(nil,DoLoop,0,0,0,0);
    ...
    else if (uMenuID = 1000) and (wcHit = 2) then
      begin
        FaceIt(nil,NewWnd,1001,0,0,0);
        repeat
          FaceIt(nil,MdlWnd,1001,0,0,0);
          ...
        until false;
        FaceIt(nil,EndWnd,1001,0,0,0);



      end
    ...
where NewWnd opens the window, MdlWnd handles the events generated by the modal 
window, and EndWnd closes the window.    The loop around MdlWnd is similar to the main 
loop around DoLoop, and the events returned from MdlWnd are similar to those returned by 
DoLoop, but only involve events generated by the modal window.
    The modal window opened is the "Modal ViewIt Window".    Events from this window that 
need to be handled by the program are returned from MdlWnd with uMenuID = FWND ID = 
1001.    The only items which generate such events in this window are the "Open Nested 
Modal Window" button and the close box at the top, left of the window.    Since both of these 
items return 1001 in uMenuID, we can simply respond to wcHit to distinguish the button hit 
(wcHit = 1) from the close box hit (wcHit = -1):
        FaceIt(nil,NewWnd,1001,0,0,0);
        repeat
          FaceIt(nil,MdlWnd,1001,0,0,0);
          if (wcHit = -1) then
            leave
          else if (wcHit = 1) then
            ...
          end if
        until false
        FaceIt(nil,EndWnd,1001,0,0,0);
where "leave" exits the modal event loop and causes EndWnd to close the window (i.e., 
hitting the close box closes the window).

5. Nested Modal Window
    The "Open Nested Modal Window" button is used to illustrate the opening of a nested 
modal window from inside the event loop of an existing modal window.    The trick here is to 
keep all of the code that is used to open and close the second modal window within the 
event loop of the first modal window (i.e., to "nest" event loops).
    As described above, the "Open Nested Modal Window" button generates an event returned
from MdlWnd with uMenuID = 1001 and wcHit = 1.    In response to this event, we open 
another modal window based on FWND 1002:
          FaceIt(nil,MdlWnd,1001,0,0,0);
          ...
          else if (wcHit = 1) then
            begin
              FaceIt(nil,NewWnd,1002,0,0,0);
              ...
              repeat
                FaceIt(nil,MdlWnd,1002,0,0,0);
                ...
              until false;
              ...
              FaceIt(nil,EndWnd,1002,0,0,0);
            end
          ...
which is the same set of commands used to open, manage, and close FWND 1001.
    The code added to open the nested modal window completes the overall structure of the 
vDemoXY program.    This structure can be seen more clearly by highlighting just the 
commands used to open and manage the modeless and modal windows:
 DoInit
 NewWnd,1000,1
 repeat
      DoLoop
      if ["About" selected] then
          ShoStr
      else if [button hit] then



          NewWnd,1001
          repeat
              MdlWnd,1001
              if [close box hit] then
                  leave
              else if [button hit] then
                  NewWnd,1002
                  repeat
                      MdlWnd,1002
                      ...
                  until [done]
                  EndWnd,1002
              end if
          until [done]
          EndWnd,1001
      end if
 until [done]
In practice, modal event loops are often executed within isolated procedures (or subroutines 
or functions), but the sequence of execution is the same:    events from the main DoLoop 
loop cause the program to enter isolated modal MdlWnd loops to support modal windows, 
which in turn can contain other modal loops.

6. Window Structure
    In addition to illustrating how to open and close modeless and modal windows, about half 
of the vDemoXY program is devoted to initializing and managing the contents of the window 
opened with FWND 1002,    the "Nested Modal ViewIt Window".    This window is more 
complex than the other windows, requires extra code to initialize its contents, plus more 
code to handle events, plus code to return information from the window to the program (i.e.,
it's more like the "real" windows you hope to create!).
    The first thing to understand about the nested window is that it contains three views 
(enter edit mode to see these):
    view #1 - at bottom with "OK" and "Show/Hide" buttons
    view #2 - initially shown at top with 4 linked controls
    view #3 - initially at top but hidden with a list control
The presence of multiple views means that we will need to pay attention to the view number
returned in wvHit when handling events from the window (you can alternatively assign 
unique ID numbers that get returned in wiHit, but we did not do this here since we wanted to
emphasize the view hierarchy).
    Four of the controls in the nested window return events when hit: the 2 arrow controls plus
the "OK" and "Show/Hide" buttons.    In addition to these events, we illustrate the use of 
"idle" time to animate the icon at the top, right of the window.    This is done by calling 
MdlWnd with b = -2 to inform ViewIt that it should return control to the program with a null 
event (uMenuID = 0) whenever no events need handling.    In all other cases uMenuID 
returns with 1002 (the FWND ID), so we were able to write the following code to handle all 
events from the modal window:
              ...
              repeat
                FaceIt(nil,MdlWnd,1002,0,0,0);
                if (uMenuID = 0) then
                  ...
                else if (wvHit = 1) then
                  if (wcHit = 1) then
                    leave
                  else if (wcHit = 2) then
                    ...
                else if (wvHit = 2) then
                  if (wcHit = 6) or (wcHit = 7) then
                    ...



              until false;
              ...
At this point, the exact actions taken in response to each of these events is not as important 
as is understanding the logic of the event processing.    A brief discussion of each action 
follows, with references to documentation where further info can be found.
    In response to the null event (uMenuID = 0), the current tick count is checked and, if 
enough time has elapsed, the icon at the top, right is changed (see "Icons, Picts, ..." 
discussion in BaseCt on-line help for more info about multi-resource icons).
    In response to a hit in the "OK" button (wvHit = 1, wcHit = 1), the loop is exited and the 
window gets closed with EndWnd.    If the "Show/Hide" button is hit (wvHit = 1, wcHit = 2), 
then ShoCtl is called to switch between views 2 and 3 by hiding one and showing the other 
(see "Views" topic in the ViewIt guide for more info).
    In response to a hit in one of the arrow controls (wvHit = 2, wcHit = 6 or 7), the numerical 
value in the adjacent static text item is increased or decreased by 0.001 units.    The value in
the static text control was linked to a program variable (discussed below), and can therefore 
be updated with the command SetVal (see "Data Links" in ViewIt guide for more info).

7. Window Data Links
    Windows like the nested modal window which contain controls that display numbers or 
strings are often linked to program variables.    This "data linking" (described in "Data Links" 
topic of the ViewIt guide) requires a little work to set up, but makes it much easier to move 
information to and from the window when compared to traditional approaches.
    There are 2 different ways to set up data linking, and the nested modal window illustrates 
both:
Method 1.    Four controls in view #2 are linked to elements of the "myRec" program record 
by passing the memory address of myRec as the last parameter in the call to NewWnd:
 FaceIt(nil,NewWnd,1002,0,110,ord(@myRec));
In addition to passing the address of myRec, each of the linked controls must be assigned a 
data type and byte offset into the record so that ViewIt can locate the linked variable.    
These types and offsets are set in ViewIt's Control or Links dialog.
Method 2.    The list control in view #3 is linked to the "myList" program variable by passing 
the control's ControlHandle, the variable's address, and the variable's data type to the 
LnkCtl command:
 FaceIt(nil,GetCtl,1002,0,3,3);
 FaceIt(nil,LnkCtl,ord(cControl),ord(@myList),2,0);
When getting started, you may prefer to use LnkCtl to do your data linking, but many 
advanced programmers also make use of linking records when such records form a natural 
part of their program.
    Once linked, values in variables can be moved to control values with the ViewIt SetVal 
command, and copied from control values back to program variables with GetVal.    The 
demo program does this before and after the nested window's modal event loop:
              FaceIt(nil,NewWnd,1002,0,0,0);
              ...
              FaceIt(nil,SetVal,1002,0,0,0);
              repeat
                FaceIt(nil,MdlWnd,1002,0,0,0);
                ...
              until false;
              FaceIt(nil,GetVal,1002,0,0,0);
              FaceIt(nil,EndWnd,1002,0,0,0);
where passing c = d = 0 to SetVal and GetVal causes them to update all linked controls or 
variables at once.    (In practice, you will usually only call GetVal if the user indicates in some 
way that their changes are to be saved.)

8. Control Overrides
    The final feature illustrated by this demo is that of modifying control behavior with 



"override" procedures.    An override procedure (or C function or Fortran subroutine or 
HyperTalk message handler) is a procedure that ViewIt will send control messages to instead
of the control's driver.    This means that you can intercept any message sent to a control, 
giving you the power to modify the control's appearance and/or behavior.
    The nested modal window contains one editable text control whose behavior is affected by
the demo's override procedure "OverProc".    OvrCtl is used to link this control to "OverProc" 
after calling GetCtl to get the control's ControlHandle:
 FaceIt(nil,GetCtl,1002,0,2,3);
 FaceIt(nil,OvrCtl,ord(cControl),ord(@OverProc)...
    When "OverProc" is called by ViewIt with a message for the editable text control, the 
procedure first checks whether the message is a key down event (uCommand = 264), and, if
so, converts any space characters (uParam[1] = 32) being passed to underline characters 
(uParam[1] = 95) before passing the message on to the driver.    See the "Override" topic in 
the ViewIt guide for more information about overriding controls.


